Persamaan Kuadrat, Pertidaksamaan, Fungsi Kuadrat

 

Baca Juga : Kumpulan Soal Persamaan Kuadrat SMP/Mts

Persamaan Kuadrat

Persamaan kuadrat adalah suatu persamaan dari variabel yang mempunyai pangkat tertinggi dua. Bentuk umumnya adalah:

PENERAPAN PERSAMAAN KUADRAT

Gerak suatu objek yang dilempar ke atas merupakan salah satu penerapan dari persamaan kuadrat dalam kehidupan sehari-hari. Gerak objek tersebut dapat dirumuskan dengan rumus h = –5t2 + vt + k, dengan h adalah ketinggian objek tersebut dalam meter, t adalah waktu dalam detik, dan v adalah kecepatan awal dalam meter per sekon. Konstanta k merepresentasikan ketinggian awal dari objek dari permukaan tanah. Untuk lebih memahami mengenai gerak objek yang dilempar ke atas, perhatikan contoh berikut.

Lihat Juga: Pertanyaan Seputar Office 365

Contoh 1: Menyelesaikan Penerapan Persamaan Kuadrat

Seorang anak berdiri di atas tebing yang memiliki ketinggian 5 m dari permukaan tanah, melempar bola ke atas dengan kecepatan awal 20 m/s (anggap bola dilepaskan ketika berada 1 m di atas permukaan tebing di mana anak tersebut berdiri). Tentukan (a) tinggi bola setelah 3 detik, dan (b) waktu yang dibutuhkan agar bola tersebut sampai di permukaan tanah.

Melempar Bola

Pembahasan Dengan menggunakan informasi yang diberikan soal, kita memperoleh h = –5t2 + 20t + 6. Untuk menentukan tinggi bola setelah 3 detik, substitusikan t = 3 ke dalam persamaan tersebut.

Menentukan Ketinggian

Apabila bola sampai di permukaan tanah, maka ketinggian bola tersebut adalah 0 meter. Sehingga dengan mensubstitusi h = 0 diperoleh,

Waktu Sampai Tanah

Karena waktu tidak pernah negatif, maka waktu yang diperlukan agar bola tersebut sampai di permukaan tanah adalah 4,28 detik.

Contoh 2: Permasalahan Pelanggan Telepon Genggam

Dari tahun 1995 sampai 2002, banyaknya pelanggan telepon genggam N (dalam juta orang) dapat dimodelkan oleh persamaan N = 17,4x2 + 36,1x + 83,3, dengan x = 0 merepresentasikan tahun 1995 [Sumber: Data dari 2005 Statistical Abstract of the United States, Tabel 1.372, hal. 870]. Pada tahun berapa banyaknya pelanggan telepon genggam mencapai angka 3.750 juta?

Pembahasan Dari soal diketahui bahwa N = 17,4x2 + 36,1x + 83,3 dan kita diminta untuk menentukan tahun ketika banyaknya pelanggan telepon genggam mencapai 3.750 juta. Dengan kata lain, kita diminta untuk menentukan nilai 1995 + x ketika N = 3.750.

Pelanggan Telepon Genggam

Karena waktu tidak pernah negatif, maka kita simpulkan bahwa 13,52 tahun setelah tahun 1995, yaitu tahun 2008, banyaknya pelanggan telepon genggam mencapai angka 3.750 juta. Semoga bermanfaat.

SUMBER : https://yos3prens.wordpress.com

Rumus-rumus Persamaan Kuadrat

PERSAMAAN KUADRAT

Bentuk Umum Persamaan Kuadrat dalam x => ax2 + bx + c =o  (a,b,c  € R) dan a ≠ 0 
 
Cara menyelesaikan persamaan kuadrat ada 3, yaitu :
1. Memfaktorkan => (x-a) (x-b) = 0
    Contoh :
    a. X2 + 12x +32 = 0 => (x + 4) ( x + 8)
 
    b. X2  + x – 56   = 0 => (x + 8) (x – 7)
 
    c. X2 -6x – 27    = 0 => (x – 9) (x + 3)
 
    d. 2x2 – 5x – 3   = 0 => (2x – 1) (x + 3)
    e. 3x2 – 6x         = 0 => 3x(x – 2)
 
2. Melengkapi Kuadrat Sempurna => (x - p)2 = q
      Ada beberapa langkah, yaitu :
      1.  Koefisien x2 harus 1
      2. Konstanta pindah ke ruas kanan {-> x2 + mx = n
      3. Diubah ke bentuk kuadrat sempurna (x + p)2 = q
   
    Contoh :
    a. x2 + 8x + 12            = 0
        x2 + 8x                     = -12
        x2 + 8x + (1/2 . 8)2 = -12 + (1/2 . 8)2
        x2   + 8x + 16          = -12 + 16
               (x + 4)2             = 4
                x + 4                = ±√4
                      x                 = -4 ± 2

                      x                 = -6 , -2

3. RUMUS ABC => x1,2 = { -b ± (b2 - 4ac) } / 2a
   Contoh :
    a. x2 + 8x + 5 => x1,2 = { -8 ± √(82 – 4.1.5) } / 2.1
                                          = { -8 ± √(64 – 20) } / 2

                                          = ( -8 ± √39 ) / 2

Penjumlahan dan Pekalian akar2 Penyelesaian Persamaan Kuadrat
dari x1,2 = { -b ± (b2 - 4ac) } / 2a dengan D = b2 - 4ac maka x1 = (-b + D) / 2a dan x2 = (-b - D) / 2a
* D adalah Deskriminan

1. x1 + x2 = {(-b + D) / 2a} + {(-b - D) / 2a}
                    = (-b + D - b - D) / 2a
                    = -2b / 2a

                    = -b /a
Jadi, x1 + x2 = -b/a

2. x1 - x2 = {(-b + D) / 2a} - {(-b - D) / 2a}

                  = (-b + D + b + D) / 2a
                  = 2D / 2a
                  = D /a
Jadi, x1 - x2 = D/a
 
3. x1 . x2 = {(-b + D) / 2a} {(-b - D) / 2a}
                  = (b2 - D) / 4a2
                  = b2 - (b2 - 4ac) / 4a2
                  = (b2 - b2 + 4ac) / 4a2
                  = 4ac / 4a2
                  = c/a

Jadi, x1 . x2 = c/a

4. (x1 + x2)2 = x12 + 2(x1 . x2) + x22
     (x1 + x2)2 - 2(x1 . x2) = x12 + x22
Jadi, x12 + x22 = (x1 + x2)2 - 2(x1 . x2)

5. (x1 + x2)3 = x13+ 3x12. x2 + 3x1 . x22 + x23
       (x1 + x2)3 3x12. x2 + 3x1 . x22 = x13 + x23 
              (x1 + x2)3 3x1.x2(x1 + x2)  = x13 + x2
Jadi, x13 + x23 = (x1 + x2)3 3x1.x2(x1 + x2)

contoh soal!
1. Persamaan kuadrat -2x2 +4x-5=0 akar2nya α dan β
    Tentukan : a.  α + β                 d. α3 + β3
                        b. α . β                    e. 1/α + 1/β
                        c. α2 + β2                f. 1/(α+2) + 1/(β+2)
   Jawaban :
   a. α + β     = -b/a = 2
   b. α . β      = c/a   = 5/2
   c. α2 + β2 = (α + β)2 - 2(α . β)
                    = 22 - 2.5/2
                    = 4 - 5
                    = -1
   d. α3 + β3 = + β)3 - 3α (α )

   = 2 - 3.5/2.2

                    = 8 - 15
                    = -7
   e. 1/α + 1/β = (α + β) / αβ
                        = 2 / (5/2)
                        = 4/5
   f. 1/(α+2) + 1/(β+2) = {(α+2) + (β+2)} / {(α+2) (β+2)}
                                      = {(α+β) + 4} / {α.β + 2(α+β) + 4}
                                      = (2+4) / (5/2 + 2.2 + 4)
                                      = 6 / (21/2)
                                      = 12/21 

                                      = 4/7

Menyusun Persamaan Kuadrat Baru 
Ada 2 cara untuk menyusun persamaan kuadrat baru yang akar2nya x1 dan x2 yaitu,
1. (x - x1) (x - x2) = 0
Contoh soal : Susunlah Persamaan kuadrat baru yang akar2nya adalah
a. 2 dan 7 => PKB = (x - 2) (x -7)
                                  = x- 9x +14
b. -3 dan -4 => PKB = {x-(-3)} {x-(-4)}
                                    = (x+3) (x+4)
                                    = x2 + 7x + 12
c. -7 dan 2 => PKB = {x-(-7)} (x-2)
                                   = (x+7) (x-2)
                                   = x2 + 5x - 14
d. 5 dan -2 => PKB = (x-5) {x-(-2)}
                                   = (x-5) (x+2)
                                   = x2 - 3x - 10
 
2. x2 - (x1 + x2)x + x1.x2 = 0
 Contoh soal
1. Susunlah Persamaan Kuadrat baru yang akar2nya adalah 2+√5 dan 2-√5!
    Jawaban :  x1 + x2 = (2+√5) +(2-√5) = 4 
                            x1.x2 = (2+√5) (2-√5)  = -1
    Jadi, PKB => x2 - (x1 + x2)x + x1.x2 = 0

                       =>                    x2 - 4x - 1 = 0

2. x1 dan x2 adalah akar2 persamaan kuadrat  x2 - 2x + 5 = 0. Susunlah persamaan kuadrat baru yang akar2nya 3 lebihnya dari akar2 persamaan kuadrat yang diletahui.
Jawaban  : x1 + x2 = -b/a = 2 dan x1.x2 = c/a = 5
                     x1 = (x1 + 3) dan x2 = (x2 + 3)
maka, x1 + x2 = (x1 + 3) + (x2 + 3)                  dan             x1.x2 = (x1 + 3) (x2 + 3)     
                         = (x1 + x2) + 6                                                       = x1.x2 + 3(x1+x2) + 9
                         = 2 + 6                                                                   = 5 + 3.2 + 9
                         = 8                                                                          = 20
Jadi, PKB => x2 - (x1 + x2)x + x1.x2 = 0

                    =>                x2 - 8x + 20 = 0

                    * Deskriminan (D) => D = b2 - 4ac *
 
untuk menentukan jenis akar2 persamaan kuadrat, rumusnya :
a. D = 0 => Mempunyai 2 akar yang sama
b. D < 0 => Tidak mempunyai akar nyata (akar2nya imajiner)
c. D ≥ 0 => Mempunyai 2 akar nyata
d . D > 0 => Mempunyai 2 akar nyata dan berlawanan
 
Contoh Soal :
1. Tentukan nilai k agar persamaan kuadrat kx2 + 3x + k = 0 mempunyai 2 akar sama/kembar
    Jawaban : Syarat akar kembar D = 0, maka
                        b2 - 4ac = 32 - 4.k.k
                                     0 = 9 - 4k2
                                 4k2 = 9
                                     k = √(9/4)
                        k = ± 3/2
 
2. Tentukan m agar persamaan kuadrat berikut x2 - 2x + (m+1) = 0 Tidak mempunyai akar nyata.
     Jawaban : Syarat tidak mempunyai akar nyata D < 0, maka
                                 b2 - 4ac < 0
                       22 - 4.1.(m+1) < 0
                               4 - 4m - 4 < 0
                                    0 - 4m < 0
                                       - 4m < 0
                                            m > 0
 
3. Tentukan P agar persamaan kuadrat x2 + px + p = 0 mempunyai 2 akar real dan berbeda.
     Jawaban : Syarat akar real dan berbeda D > 0, maka
                             b2 - 4ac > 0
                           p2 - 4.1.p > 0
                               p2 - 4p > 0
                              p(p - 4) > 0 
    Jadi, p < 0 dan p > 4 

Post a Comment

pardomuansitanggang@gmail.com

Previous Post Next Post